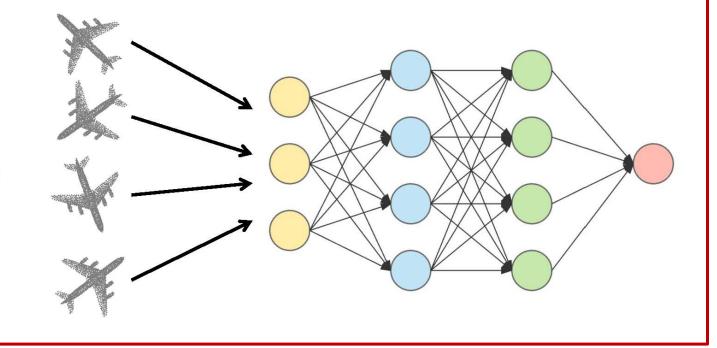
Reading: Equivariant Multi- View Networks

Carlos Esteves* , Yinshuang Xu* , Christine Allen-Blanchette, Kostas Daniilidis (UPenn) **Presented by: Congyue Deng**

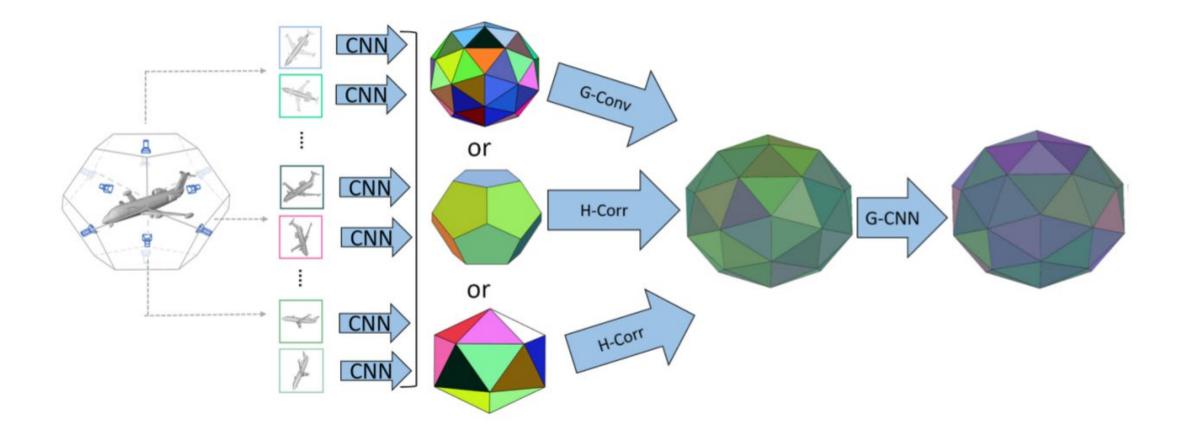
Intuitions

Feed multiple poses of the same object to the network **at once** "If we don't know what pose to look at, why not just look at **all** poses!"

- Can reproduce fairly good results
- Sacrifice data-efficiency more memory consumption
- Theoretically equivariant up to precision errors caused by discretization



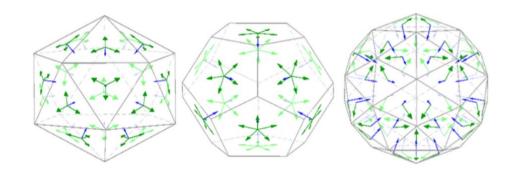
Idea overview



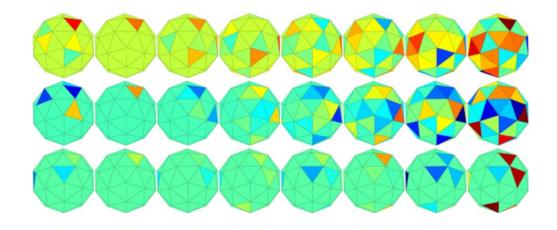
Let's build the network!

We need to...

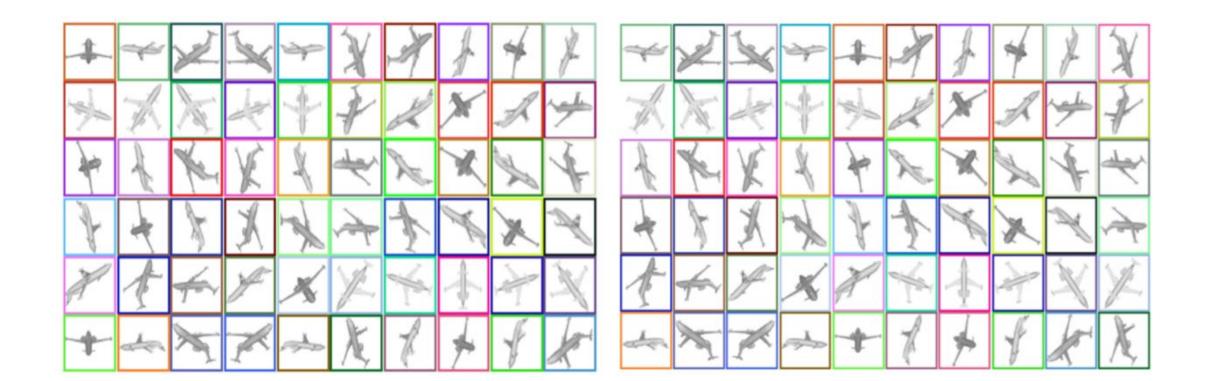
• Step 1: Uniformly sample camera views



• Step 2: Define group convolution filters



Step 1: Sample views



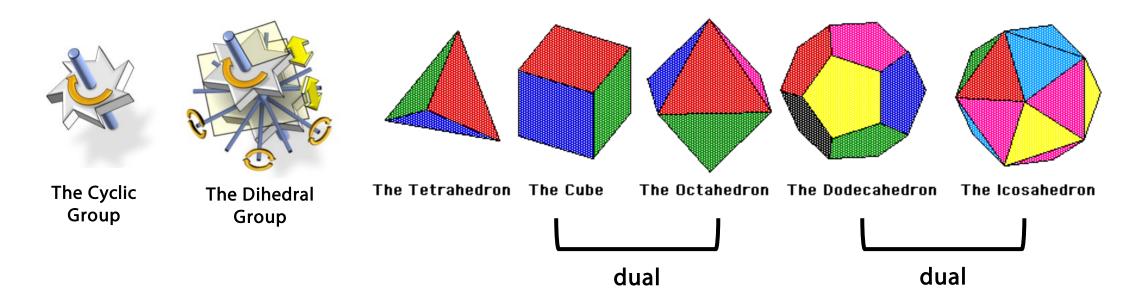
Step 1: Sample views

Can also sample **panoramic images**!

Finite 3D rotation groups

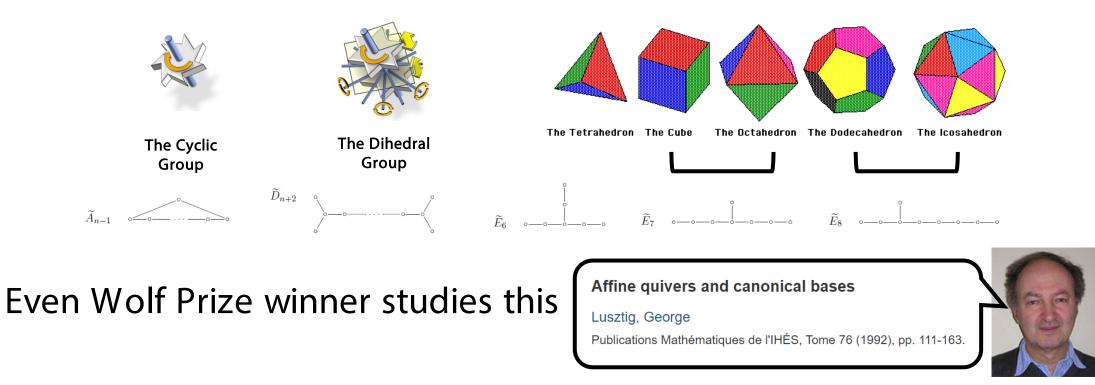
These are the only finite subgroups of SO(3)

• Equivalently, SU(2)



Finite 3D rotation groups — fun fact

They correspond to a lot of fancy things in algebra (representation theory, category theory, \ldots) — the McKay Correspondence

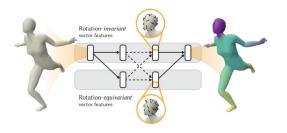


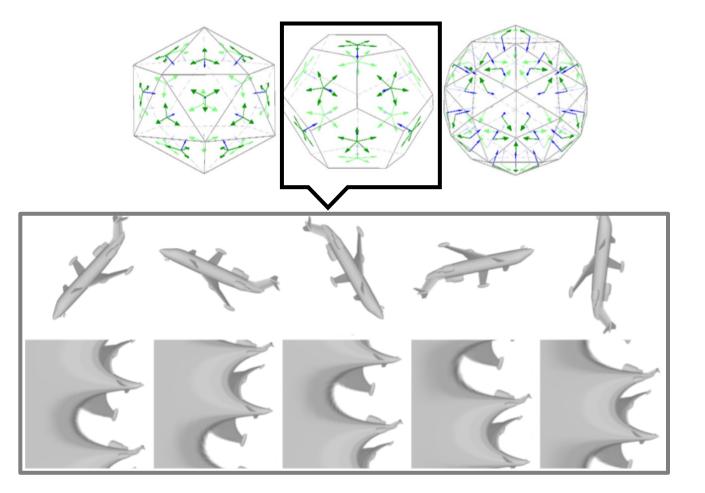
Equivariance with fewer views

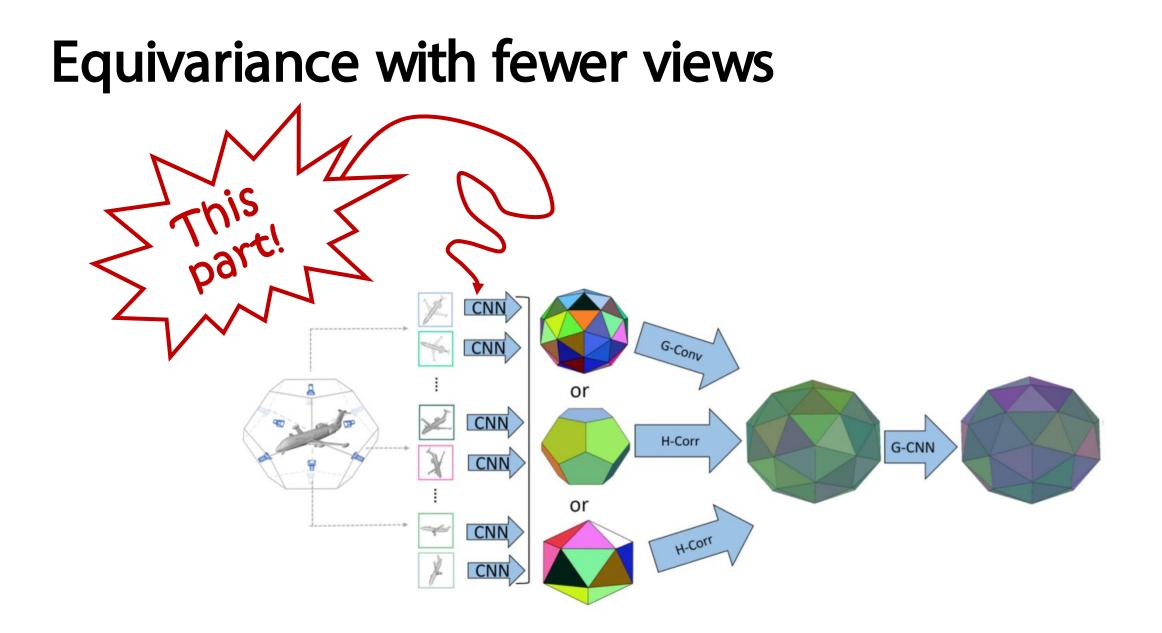
In-plane rotations

 can be cancelled out by the equivariance of 2D convolution on images

Is somehow a discrete version of https://arxiv.org/pdf/2006.01570.pdf



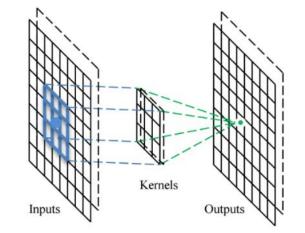




Group convolution

Conventional 2D convolution $(f * h)(y) = \int_{x \in \mathbb{R}^2} f(x)h(y - x) dx$

• Equivariant to the 2D translation group



Generalize to **arbitrary groups** $(f * h)(y) = \int_{g \in G} f(g)h(g^{-1}y) dg$ Discrete version $f_j^{\ell+1}(y) = \sigma \left(\sum_{i=1}^{c_i} \sum_{g \in G} f_i^{\ell}(g)h_{ij}(g^{-1}y) \right)$

Group convolution

Convolution on homogeneous spaces

$$(f * h)(y) = \int_{g \in G} f(g\eta)h(g^{-1}y) dg \qquad \qquad \text{homogeneous space} \\ (f * h)(g) = \int_{x \in \mathcal{X}} f(gx)h(x) dx \qquad \qquad \text{homogeneous space} \\ \text{correlation (H-Corr)} \end{cases}$$

Intuitively, a homogeneous space is a group without a specified "0"
e.g. a 2D plane on which you don't know where the origin is

Compare with convolution on groups $(f * h)(y) = \int_{g \in G} f(g)h(g^{-1}y) dg$

Group convolution

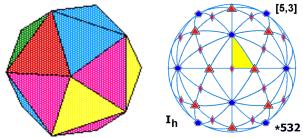
Convolution on homogeneous spaces

• Discrete version

$${}^*f_j^{\ell+1}(y) = \sigma \left(\sum_{i=1}^{c_i} \sum_{g \in G} f_i^{\ell}(g\eta) h_{ij}(g^{-1}y)\right)$$

$${}^*f_j^{\ell+1}(g) = \sigma \left(\sum_{i=1}^{c_i} \sum_{x \in \mathcal{X}} f_i^{\ell}(gx) h_{ij}(x)\right)$$

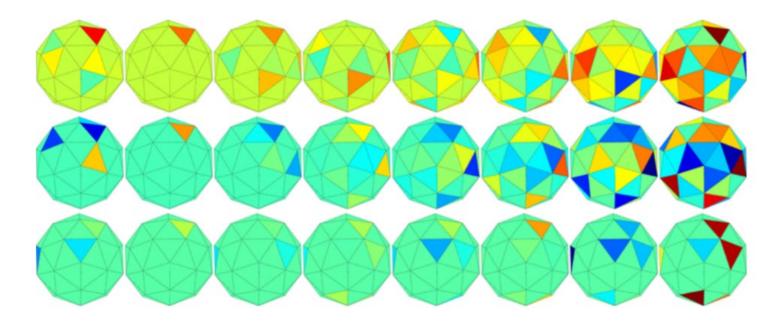
Why homogeneous space? — So we can operate on the primitives instead of the abstract groups



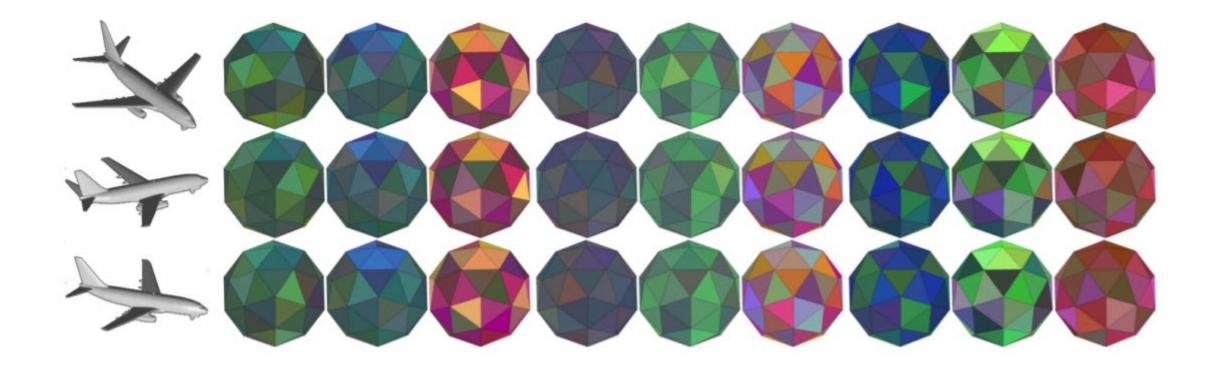
Filter localization

Choose a subset *S* of *G* that is allowed to have nonzero filter values while h(G - S) is set to zero

• *S* is a fixed hyperparameter



Feature visualizations



Experimental results

ModelNet40 _____ classification & retrieval _____

	M40 (aligned)		M10 (a	ligned)		M40 (rotated)	
	acc	mAP	acc	mAP		acc	mAP
MVCNN-12 [33]	90.1	79.5	-	-	MVCNN-80 [33]	86.0	-
SPNet [40]	92.63	85.21	97.25	94.20	RotationNet [20]	80.0	74.20
PVNet [41]	93.2	89.5	-	-	Spherical CNN [6]	86.9	-
SV2SL [14]	93.40	89.09	94.82	91.43	MVCNN-M-60	90.68	78.18
PANO-ENN [31]	95.56	86.34	96.85	93.2	Ours-12	88.50	79.58
MVCNN-M-12	94.47	89.13	96.33	93.54	Ours-20	89.98	80.73
Ours-12	94.51	91.82	96.33	95.30	Ours-60	91.00	82.61
Ours-20	94.69	91.42	97.46	95.74	Ours-R-60	91.08	88.57
Ours-60	94.36	91.04	96.80	95.25			
Ours-R-12	94.67	93.56	96.78	96.18			

Experimental results

ModelNet40 classification & retrieval

- More coherent across rotations
- But still not fully equivariant a small performance gap from aligned to rotated shapes
- Sampling more views alleviates the issue

